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The objective of this work is to develop techniques to predict the results of 
experiments involving chaotic dispersion of passive tracers in two-dimensional low 
Reynolds number flows. We present the design of a flow apparatus which allows the 
unobstructed observation of the entire flow region. Whenever possible we compare 
the experimental results with those of computations. Conventional tracking of the 
boundaries of the tracer is inefficient and works well only for low stretches (order lo2 
at most). However, most mixing experiments involve extremely large perturbations 
from steady flow since this is where the best mixing occurs. The best prediction of 
widespread mixing and large stretching (order i04-105) is provided by lineal 
stretching plots ; surprisingly the technique also works for relatively low numbers of 
periods (as low as 2 or 3). The second best prediction is provided by a combination 
of low-order unstable manifolds -which indicate where the tracer goes, especially for 
short times - and the eigendirections of low-order hyperbolic periodic points - which 
indicate the alignment of striations in the Aow. On the other hand, Poincard sections 
provide only a gross picture of the spreading: they can be used primarily to detect 
what regions are inaccessible to the dye. Comparison of computations and 
experiments invariably reveals that bifurcations within islands have little impact in 
the mixing process. 

1. Introduction 
An insight into the mixing mechanisms of viscous fluids can have major 

consequences in fields as diverse as earth sciences, physiology, chemical engineering, 
and material sciences. The problem, however, is a complex one and its understanding 
requires a symbiotic use of analytical, computational, and experimental techniques. 
There is reason to believe that a unified theory is emerging and mixing in slow flows 
is beginning to be understood. However, until now there has not been any thorough 
combined experimental-computational study of chaotic mixing in slow flows. 

We are of the opinion that in order to make further progress it is necessary to 
thoroughly characterizelunderstand the mixing in a few prototypical systems. In 
this study we focus on the mixing of similar fluids in the flow field of two non- 
concentric cylinders (a journal bearing) using an array of analytical, computational 
and experimental tools. The journal bearing is an ideal system for such studies : it is 
one of the few flows which is experimentally realizable and which has an analytic 
solution for the stream function. To date there is only one combined experi- 
mental-computational study of chaos in the journal bearing flow (Chaiken et al. 
1986). Other, strictly computational results have been reported by Chaiken et al. 
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(1987) and Aref & Balachandar (1986). The purpose of these works was to show that 
it is possible to have chaos in a physically realizable Stokes flow. However, little 
emphasis was placed on the relationship and possible use of dynamical systems 
concepts to the study of mixing. 

In this study, we reduce background information to a minimum, assuming that the 
reader is somewhat familiar with the fundamentals of mixing and chaos (for 
background and applications see Ottino 1989). The objective is to present a rather 
comprehensive study of possible tools of analysis using a particular flow geometry to 
demonstrate their application. In  fact, in order to emphasize the relationship between 
various methods of analysis and the experiments we shall not explore a large region 
of the operating space. Instead we shall concentrate on a few operating conditions. 
Whenever possible we shall compare the experimental results with those of 
computations. (Figures, 4, 9, 10, 11 and plates 1 and 3 correspond to the same 
experiments.) 

Undoubtedly traditional dynamical systems tools are of relevance to mixing in 
chaotic flows. However, their importance can be overestimated. There are two 
significant differences between standard studies of dynamical systems and mixing. 
The first difference is that traditional studies focus on long-time and asymptotic 
behaviour (for example, attractors in dissipative systems or Liapunov exponents in 
conservative or dissipative systems) ; but in mixing we are primarily interested in 
short-time behaviour, since we want rapid mixing. The second difference is that in 
most physical applications chaos is something to  be avoided, so studies are done on 
small perturbations from regular behaviour. However, in mixing we want as much 
chaos as possible so the perturbations must be large ; this restricts the usefulness of 
analytical tools based on small perturbations from integrability. Finally, the global 
behaviour of the system is much more important in mixing that in ordinary studies 
of dynamical systems. It will be apparent from our results that the mixing problem 
cannot be solved in a complete form within the framework of current analytical tools 
and that new tools will have to be developed. 

2. Journal bearing system 
2.1 Geometry 

The journal bearing or eccentric cylinder geometry is shown in figure 1 (a) .  The flow 
region is contained in the annulus between two infinitely long cylinders whose central 
axes are parallel but not coincident, i.e. the cylinders are eccentric. The geometry of 
the system is completely determined by two dimensionless parameters, the ratio of 
the radius of the inner cyclinder to the radius of the outer cylinder, r = rin/rout, and 
the distance between the centres of the two cylinders, e, normalized by the radius of 
the outer cylinder E = e/rout. Note that 0 < r+e: < 1. 

If the fluid between the cylinders is incompressible the problem can be solved 
through the use of the stream function. If we further assume that the flow is steady 
and inertial effects are negligible then the stream function can be found by solving 
the biharmonic equation, V4Y = 0, using the appropriate boundary conditions. 
Analytic expressions for the stream function can be found in a variety of sources 
(Jeffery 1922; Duffing 1924; Muller 1942 (a ,  b ) ;  Wannier 1950; Ballal & Rivlin 1976). 
We choose the solution presented by Wannier (1950) because it leads to faster 
numerical simulations. Also, it  is given in rectangular coordinates, in contrast to the 
other solutions which are given in bipolar coordinates. Rectangular coordinates 
simplify several computational aspects of the problem such as the graphics. 
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FIQURE 1. Journal bearing geometry. (a) The basic geometry is determined by two parameters, the 
ratio of the radii of the two cylinders, r = rin/rout and the ratio of the eccentricity to the outer 
cylinder E = e/rout. (b) The discontinuous velocity protocol. When a cylinder is in motion, it moves 
with a constant velocity. This is not a requirement however. If just one cylinder at a time moves 
the specific velocity profile of the cylinder is unimportant ; only the displacement effects the results. 
P' shows the most obvious method of creating the discontinuous velocity protocol. First the outer 
cylinder rotates its full displacement followed by the inner cylinder moving for its full displacement. 
This leads to a non-symmetric mapping. If instead we define the period as P, i.e. move the inner 
cylinder for half of its total displacement first, then move the outer cylinder, and finaHy move the 
inner cylinder for the other half of its displacement, the resulting mapping is symmetric. 

Since the problem is linear, the stream function can be written as a sum of terms 
due to the motion of the inner and outer cylinders: 

Y ( ~ , Y )  = u l , n ( x , ~ ) v i n +  y o u t ( ~ , ~ ) v o u t ,  

where vin and vout are the angular speeds of the cylinders. 
Alternatively, if both cylinders are in motion, which is the base case in this 

research?, one of the velocities can be divided out, recasting the equations in this 
form : -- 

y v ( Z 7  Y) - p i n ( X ,  Y)Q + y o u t ( x ,  y ) ,  
Vout 

where 52 = vin/vout. The velocity field is derived from the stream function in the usual 
way : 

Since there is an analytic expression for the velocity field, the equations of motion 
are a pair of coupled ordinary differential equations. The mixing in the flow is 
determined by the integrated velocity field (the so-called motion). Dividing these 
equations by the velocity of the outer cylinder and setting d8 = voutdt the equations 
of motion become 

dx a( F / V O U J .  dy - a( ~ / v o u t )  
de = - aY ' d8-  ax * 

- 

t In  order to generate chaos in a flow the streamlines, not just the velocity, must be time 
dependent. A time-dependent flow with just one cylinder moving would not result in chaotic 
motion. 
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Physically, 8 is the angular displacement of the outer cylinder and it is clear from this 
last equation that the position of a fluid element is dependent on the displacement 8 
of the cylinders and not the actual velocity. This seemingly trivial point will have 
important consequences when we define our method for parameterizing the 
perturbation of the velocity field in the next section. 

2.2. Boundary motion 
A two-dimensional Hamiltonian system cannot be chaotic. Therefore, we must add 
another dimension to the system if there is to be any possibility of chaos. The 
geometry fixes the number of spatial dimensions, so in order to make the system 
chaotic it must be made time dependent. Strictly speaking when the system is made 
time dependent there is no longer an explicit solution for the velocity field. However, 
we make a pseudo-steady-state assumption such that a t  any instant in time the 
velocity field is given by the instantaneous velocities of the inner and outer cylinders. 
In this case the stream function can be written 

where Yin(x, y) and Yout(x, y) are the steady-state stream functions due to motion of 
the inner and outer cylinders respectively (Aref & Balachandar 1986). To further 
simplify the problem we shall only consider periodic motion of the boundaries. 

The addition of an explicit time dependence increases the dimension of the system 
to three ; however, since the time dependence is periodic the problem can be reduced 
to a two-dimensional map (see Guckenheimer & Holmes 1983). When the motion is 
made periodic the period becomes an additional parameter in the problem. It may 
appear that the period should be thought of in terms of time. But as was shown in 
the previous section, as long as inertial forces are negligible, the relevant parameter 
is displacement rather than time. Therefore the period of the perturbation will be 
parameterized by the rotation of the outer cylinder per period, i.e. if T is the period 
of a particular periodic velocity for wout(t)  and win(t) (throughout this work win(t) and 
wou,(t) will always have the same period), then the period of the perturbation is 
defined as i f T  

Another change caused by the time-dependent boundary motion is in the 
interpretation of a. It is now the ratio of the awerage velocities of the inner and 
outer cylinders or, equivalently, the ratio of the inner-cylinder to outer-cylinder 
displacement per period. 

Obviously, there are an infinite number of periodic motions that we could use but 
for simplicity we primarily use a discontinuous velocity protocol (see figure 1 b ) .  The 
most general definition of a discontinuous velocity protocol is one where only one 
cylinder is in motion a t  any particular instant of time. For this protocol the actual 
wave form of the cylinder velocities is unimportant (provided creeping flow 
conditions, low Reynolds and Strouhal numbers, are always met). Only their 
displacements affect the results. Note that this is only true for the discontinuous 
velocity protocol. If we choose a velocity protocol where the cylinders can be in 
motion at the same instant of time then the results will depend on the actual 
waveform (some comments regarding this issue will be made in $ 5 ) .  The 
straightforward discontinuous velocity protocol moves one cylinder for its periodic 
displacement and then move the other for its periodic displacement. Such a protocol 
was used by Chaiken et al. (1986,1987) and Aref & Balachandar (1986). However, the 
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mapping that results from this motion is not symmetrict and makes the analysis 
unnecessarily complicated. If instead of moving the first cylinder its entire 
displacement per period we initially move it one half of its displacement per period, 
then move the other cylinder for its periodic displacement, and finally move the first 
cylinder for the other half of its displacement per period, the resulting map will be 
symmetric about the line formed by the centres of the two cylinders. A symmetric 
map simplifies the implementation of several of the methods of analysis, most 
notably the search for periodic points. 

3. Experimental set-up 
The experimental apparatus was designed in order to accomplish two key 

objectives. The first is to be able to rotate the inner and outer cylinders independently 
and a t  variable speeds according to some arbitrary wave form. The second is to 
be able to view, without obstruction, the entire flow domain. The first is relatively 
easy to implement; the second requires some forethought to implement owing to 
constraints created by the first objective. However, with the help of a machine 
designer, Mr Ed O’Brien, we have fabricated an apparatus which meets both 
objectives. 

The experimental system is shown schematically in figure 2. The key element of 
the design resides in the outer cylinder, which is a stainless steel tube 15 cm long and 
of 15 cm inner diameter. Two large bearings fix the cylinder to the frame of the 
apparatus while a large gear is used to rotate it. The bearings and the gear are all 
attached to the outer surface of the cylinder so that there is a clear view through the 
interior of this cylinder. The inner cylinder is solid, also 15 cm long with a 5 cm 
diameter, and is connected to an arm extending over the top of the outer cylinder. 
The arm is attached to the frame with bolts in slotted holes such that the inner 
cylinder can be positioned anywhere within the outer cylinder. The bottom of the 
outer cylinder is a glass plate thereby allowing the flow domain to be viewed from the 
bottom of the apparatus as well as the top. If the flow is viewed from the top there 
will be an obstruction caused by the arm which holds the inner cylinder (see 
figure 2 b ) .  Although we have the ability to choose which part of the flow the arm for 
the inner cylinder will obstruct we do not know a priori if significant events will take 
place in the obstructed region. (Note that a very important point in the flow, a 
period-1 hyperbolic point, is hidden in the most conventional design.) However, the 
view from the bottom is completely unobstructed and consequently no information 
is lost when recording experiments on film. 

The cylinders are rotated by identical motors ; Bodine NSH-11D5. The inner 
cylinder is driven with a timing belt whereas the outer cylinder is driven directly 
through gears. The gearing of the two cylinders is such that their linear velocities 
have nearly identical ranges. Tachometers are attached to the motors to monitor 
their speeds and allow feedback control. The displacements of the cylinders are 
calculated by numerically integrating the speeds. The motors are controlled by PC’S 

LIMITED 286 personal computer with a DSP- 16 Data Acquisition Processor board 
from Ariel Corp. 

The cylinder velocities are created in the following manner. First the computer 
approximates the desired wave form by generating a look-up table of values which 

t A periodic motion is symmetric if running the flow forward and the reflecting across the line 
of symmetry (the line through the centres of the two cylinders in this case) is equivalent to running 
the flow backward (see Franjione, Leong & Ottino 1989 for a thorough discussion). 
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FIGURE 2 (a, b) .  For caption see facing page. 

are to be converted into voltage and output every 0.01 s by the DSP-16. This table 
is then down loaded to the DSP-16. The DSP-16 has its own microprocessor which 
has been programed to send the wave form to a D/A converter which in turn outputs 
a voltage to the controller of the appropriate motor. At the same time the motor 
speeds are determined from the tachometers and converted to digital values by the 
DSP-16 board. These values are summed to give the total displacement of each 
cylinder. The output voltages for the next period are determined from these 
displacements through a simple proportional control scheme. Since the time lag in 
the control is so great (a whole period) it is useful only in providing the desired 
rotation of the cylinders and correcting for drift. However, these are the only two 
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FIGURE 2. Schematics of the experimental apparatus : (a) the side view, ( b )  the view from the top, 
and ( c )  a cutaway view of the flow region. Two large bearings (not shown) connect the outer 
cylinder to the apparatus. The bottom of the outer cylinder is made of glass which allows an 
unobstructed view of the flow domain when viewed from the bottom. The inner cylinder is attached 
to the base of the apparatus such that it can be positioned anywhere within the outer cylinder. 

major control problems so this simple proportional control scheme is more than 
adequate. 

The working fluid is glycerin which has a viscosity of approximately 7 P and a 
density of 1.2 g/cm3. This results in a Reynolds number of 0.8 and a Strouhal number 
ranging from 0.2 to 0.026, where the lengthscale is based on the difference in radii of 
the two cylinders, the velocity scale is based on the sum of the speeds of the cylinders, 
and the characteristic time is the period of the perturbation. The cylinders are only 
15 cm deep so in order to eliminate bottom effects the glycerin is floated on a 2 cm 
thick layer of 1-iodo-3-methylbutane which has a viscosity of approximately 1 CP 
and a density of 1.5g/cm3. The upper surface of the glycerin is open to the 
atmosphere. Experiments have verified that the flow in the glycerin is independent 
of depth. Therefore the bottom effects are confined to the bottom organic layer and 
the effects of the upper free surface are negligible. 

The basic experiments are performed by marking a region of the flow with a 
fluorescent dye (Cole-Parmer ; type 5295-05) dissolved in glycerin and observing how 
this region deforms when subjected to a specified velocity protocol. The properties of 
the glycerin with and without the fluorescent dye are nearly identical 80 effects due 
to viscosity difference and surface tension can be ignored (in other related work we 
magnify the effects of surface tension to study drop breakup in chaotic flows). Also, 
the diffusion coefficient of the dye is quite small ( cm2/s) so the spreading of the 
dye shown in the results ia strictly due to convection. To get maximum contrast 
between the marked and unmarked fluid the flow region is illuminated with long- 
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wave UV light and all visible sources of light are removed. In  addition, a UV filter 
is used on the camera to eliminate any direct UV light. With this technique only the 
dye is observable. We call these experiments deformation experiments or sometimes 
blob deformation experiments. The experimental results are recorded on colour slide 
film; a picture of the flow region is taken after every period. The film used is 
Fujichrome IS0 100 color slide film. Prints of the slides were made on CIBACHROME- 

A11 photographic paper. 

4. Results 
4.1. Experimental results 

Figure 3 (plate 1) shows the results of deformation experiments where the dye is 
initially placed arbitrarily somewhere in the 'chaotic' region. (For the purposes of 
discussion in this section the ' chaotic ' region is the region that the dye spreads over 
in figure 3. The regular regions are the regions void of dye. We have observed good 
agreement between the regions the dye spreads over in figure 3 and regions of chaos. 
However, this agreement may not exist in general.) The exact initial location of the 
drop has no noticeable effect on the results of figure 3 provided it is placed in the 
chaotic region. All the experiments correspond to r = i, e = 0.3, and l2 = -3.0, and 
to the discontinuous velocity profile shown in figure 1 ( b ) .  The only parameter varied 
is 8, the amount that the cylinders are rotated per period. The values of 0 vary from 
90" to 720" by increments of 90" in figures 4, 9, 10, 11 and plates 1 and 3. 

It is apparent from visual inspection that the area covered by the dye increases 
with increasing period. This may at first glance appear to violate the area-preserving 
character of the flow. However, this effect is mainly due to high concentration of the 
dye. As it stretches it appears to maintain a constant fluorescent intensity even 
though its concentration is decreasing. There is also an effect due to parallax. Since 
the dye is a three-dimensional object it must have some depth. Initially the dye is 
spherical so there is no parallax. However, as the experiment proceeds the dye is 
stretched into a very narrow ribbon. After a few periods the width of the dye ribbon 
is (in general) several orders of magnitude less than the depth. Viewing such a ribbon 
from a finite distance results in an apparent width greater than the actual width. As 
the dye is stretched the width observed is due to viewing the striations from a 
position slightly off vertical. This is an unavoidable drawback of the photography. 
However, these effects can be used to our advantage. This apparent area increase can 
be measured, thereby providing a quantitative measure of the mixing in the flow 
(independent measurements of the perimeter and area are proportional for area 
coverages of less than 50%, Leong & Ottino 1989). We should also explain that the 
pictures in figure 3 represent an apparent steady state in the mixing process; if the 
number of periods is increased the large-scale aspects of the figures, folds and islands, 
are nearly unchanged. (Obviously it is not a true steady state since the dye will 
eventually diffuse throughout the entire flow domain. Rather, it is a crossover from 
convection-dominated mixing to diffusion-dominated mixing. In the timescale of our 
experiments diffusion is unimportant.) 

At 8 = 90" the dye spreads over a small region corresponding to the location of the 
separatrixes for the unperturbed flow. At 8 = 180" the shape of the region which the 
dye has spread over is identical to that a t  8 = 90" but it is now approximately twice 
as thick. However, when 0 is increased to 270" there is a significant increase in the 
area coverage. The shape of the 'chaotic' region has also been greatly altered. For 
8 = 90" and 8 = 180" there was a single large 'regular ' region in the middle of the flow 
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FIGURE 3. Deformation experiments for the discontinuous velocity protocol with values of 0 ranging from 
90" to 720". The remaining parameters are held constant at &=0.3, r=1/3, and O=-3.0. (a) 0=90°; (b) 
e=180°; (c) e=noo; (d) e=360°; (e) e=450°; v) e=54O0; (g) B=630°; (h) @=noo. (a-g) Deformation 
after 10 periods, (h) deformation after 5 periods. In all cases the dye initial condition was a small drop 
of dye which became stretched by several orders of magnitude. The Poincart section with the appropriate 
parameters was used to determine the initial location of the drop. 
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FIGURE 3. Deformation experiments for the discontinuous velocity protocol with values of 0 ranging from 
90" to 720". The remaining parameters are held constant at &=0.3, r=1/3, and O=-3.0. (a) 0=90°; (b) 
e=180°; (c) e=noo; (d) e=360°; (e) e=450°; v) e=54O0; (g) B=630°; (h) @=noo. (a-g) Deformation 
after 10 periods, (h) deformation after 5 periods. In all cases the dye initial condition was a small drop 
of dye which became stretched by several orders of magnitude. The Poincart section with the appropriate 
parameters was used to determine the initial location of the drop. 
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FIGURE 7. Experiments demonstrating the near solid-body rotation in the regular region and the large 
difference in stretching between the regular and chaotic regions. The parameter values are E =0.3, Q=-3.0, 
r=1/3, 0=150°. This matches the Poincare section shown in figure 6(e). The initial placement of a line 
segment of dye is shown in (a). Two colours are used to differentiate the ends of the line segment. The 
white section passes directly through the middle of the central island while the red segment passes through 
the boundary of the island and into the chaotic region. (b-e) Show the deformation after 1, 2, 3, and 4 
periods respectively. After 4 periods the white segment has come back very near to its original position, 
demonstrating that the rotation in the central island is approximately period 4 and also nearly a solid-body 
rotation, at least in the interior. The red dye shows that near the boundary of the island there is a steep 
gradient in the rotation rate unlike the solid-body rotation of the interior of the island. (f-i) Show the results 
after 8, 12, 16, and 20 periods respectively. Even after 20 periods the white dye is deformed only slightly 
whereas the small amount of the red segment in the chaotic region has stretched by several orders of 
magnitude. 

SWANSON & OTTINO 



Journal of Fluid Mechanics, bl. 213 Plate 3 

FIGURE 8. Plots of periodic points up to period 5 for values of 0 ranging from 90" to 720' as in figure 
3. The other parameters are ~ = 0 . 3 ,  r=1/3, 52=-3.0. The circles represent elliptic periodic points and the 
crosses represent hyperbolic points. The points are colour-coded by period; black marks period-1 points, 
green period-2, red period-3, dark blue period-4, light blue period-5. The Poincark sections of figure 4 
are overlaid to show the regular and chaotic regions of the maps. The figures all show an excellent agree- 
ment between the location of periodic points and the features of the bincar6 sections. The number of 
periodic points increases for all periods as 8 is increased but the number of elliptic periodic points seems 
to go through a maximum. At 8=720°, (h), there are no elliptic periodic points of periods 1-5. It appears 
that all of the elliptic periodic points in the previous maps have become hyperbolic. This might be expected 
based on the widely accepted idea that as the perturbation is increased islands tend to break down into 
smaller islands of higher period. 

SWANSON B OTTINO 
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domain. At 8 = 270" this central island has disappeared. Instead there are two 
smaller islands, one above the other, on the line of symmetry. It is clear that at  8 = 
270" there is something fundamentally different from the previous values of 8. 

When 8 is increased to 360' the picture becomes similar to 8 = 90" and 180" again; 
the two islands have disappeared and been replaced by one large central island. The 
total area that the dye spreads over also appears to have decreased slightly from 
8 = 270". At 8 = 450" there is still a central island which is devoid of dye ; however, it 
does not appear to have evolved from the 8 = 360" island ; it is not centred anywhere 
near the expected location. Instead it looks as if part of the regular region which was 
previously next to the outer wall breaks away and is moving into the chaotic region. 
At the same time the previous central island has disappeared. This new island 
continues to shrink as 8 goes through 540" and 630". Finally at 720" the only regular 
region is a thin strip next to the outer wall. These changes are difficult to completely 
predict by any conventional technique and new methods of analysis need to be 
developed (see $4.5). The most straightforward simulation technique would be to 
represent a blob by a collection of points. However, this is out the question; the 
storage and time necessary to resolve thin striations makes the problem completely 
impractical (see Franjione & Ottino 1987). 

Several other aspects of the problem are worthy of note. The first is the dependence 
of the behaviour near the outer cylinder on the rotation of the outer cylinder. There 
must always be a regular region next to the outer cylinder, although it may be quite 
thin, because a t  some, perhaps infinitesimal, distance from the wall the rotation of 
the inner cylinder will have a negligible effect on the flow (the same holds true for the 
effects of the outer cylinder next to the inner wall). But the thickness of this region 
varies greatly depending on the rotation of the outer cylinder and does not precisely 
follow the simple rule that large period creates more chaos and consequently smaller 
regular regions. Rather, the key parameter seems to be the 'phase' of the outer 
cylinder (how close it is to an integer number of rotations per period). For the periods 
of 8 = 360" and 8 = 720" the outer cylinder moves exactly one and two revolutions 
per period respectively. Notice that the regular region next to the wall is thicker for 
these periods than for the periods immediately preceding and following them. 

Another aspect is the evolution of the striations and folds as the period is 
increased. We have stated that the macroscopic picture does not change in a 
continuous fashion, i.e. the region that the dye spreads over does not evolve in a 
'linear' fashion with the changing period. However, if we adopt a different viewpoint 
of the mixing process and focus on the folding and nesting pattern of the dye 
striations then the pictures do seem to change in a continuous manner; each fold 
'folds more' as the period of the perturbation is increased. Each folding pattern can 
be thought of as local event, affecting its immediate neighbourhood. The folds of a 
particular pattern will propagate through the flow until they ' collide ' with the folds 
of a different pattern. The global picture is then determined by how folds of different 
patterns are able to fit together. If the folds fit together well the dye will spread over 
a large region and the chaotic region is large. If the folds start approaching each other 
a t  blunt angles there will be gaps where no dye can penetrate; these gaps are the 
regular regions. The sizes of the regular islands are determined by the misfit of the 
folds. 

4.2. Poincare' sections 
A Poincare' section shows the long-time behaviour of trajectories of several different 
initial conditions. If the initial conditions are chosen well they will indicate the 
behaviour of all initial conditions. In a typical Poincare' section (e.g. figure 4) we see 
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k) (4 

FIQURE 4. Poincar6 sections for a discontinuous velocity protocol with values of B ranging from 90" 
to 720" in 90" increments (a-h respectively). The remaining parameters are e = 0.3, r = #, Q = -3.0 
and they are held constant. Each Poincar6 section is made with the same eight initial conditions 
and the initial conditions are iterated for 1000 periods. Since the mapping is symmetric each iterate 
is reflected across the line of symmetry to give a total of 2000 points per initial condition or a total 
of 16000 points. The Poincar6 section of 0 = go", (a) ,  is mainly regular. Only a thin strip in the 
region where the separatrixes have broken apart is chaotic. In ( b ) ,  B = 180", the chaotic region has 
grown but is still confined to a strip (thicker than B = 90") around the steady-state separatrixes. 
The central island is reduced in size and the boundary has developed pointed ends. When 0 is 
increased to 270°, ( c ) ,  the central island disappears and two period-2 islands, much smaller in total 
area, appear. As a result the chaotic region now covers nearly the entire flow domain. It appears 
that the central island has bifurcated into the two period-2 islands. However, at  B = 360", (d) ,  the 
central island returns, the period-2 islands disappear, and the regular region next to the outer wall 
grows in size. The net result is that the chaotic region is smaller for B = 360" than for B = 270". At 
B = 450°, ( e ) ,  there is still a large regular region but it is unrelated to the central island of the 
previous plots. Rather it appears to be a section of the regular region next to the outer wall which 
has broken off and moved into the chaotic region. At the same time the chaotic region extends 
closer to the outer wall. At 0 = 540' (f) the new period-1 island still exists but now it has been 
reduced in size. The regular region next to the outer wall has increased in size. A t  0 = 630" (9 )  the 
system is completely chaotic except for a small period-1 island which is the same island as in B = 
450" and 540". Finally, at  0 = 720", (h ) ,  the Poincark section is completely chaotic except for a thin 
band next to the outer cylinder (compare with plate 1 and figure 11) .  
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that a trajectory has one of two distinct types of behaviour. With the first type of 
behaviour all of the points of a trajectory lie on a smooth surface. This implies that 
the trajectory is confined to a lower-dimensional subspace of the phase space (since 
we have a two-dimensional map the only subspace is a curve). This is the type of 
behaviour that one expects from unperturbed Hamiltonian systems so it is usually 
referred to as a 'regular' trajectory. With the second type of behaviour the points of 
a trajectory are scattered throughout some area of the Poincard section. There is no 
apparent structure to the trajectory with this type of behaviour (although this is in 
part due to some shortcomings of Poincare' sections), and so it is called 'chaotic'. 

These definitions of regular and chaotic are not rigorous in a mathematical sense 
and it is possible for regular regions to look chaotic and chaotic regions to look 
regular. A regular orbit may look chaotic because its exact trajectory cannot be 
determined owing to round-off error. On the other hand, a chaotic orbit may appear 
to be regular due to the chaotic region having a very thin width (for example, similar 
to figure 4a, but with a smaller 8). It is tempting to define chaotic regions and islands 
of regular behaviour in terms of KAM surfaces (Guckenheimer & Holmes 1983). 
However, in terms of the experiments this definition is not very practical. Our islands 
manifest themselves in - 10 periods whereas KAM surfaces become visible in 
computations typically after lo3-lo4 periods. 

4.2.1. Agreement between Poincare' sections and experiments 

Figure 4 shows the Poincare' sections with values of 0 from 90" to 720'. The other 
parameters are 8 = 0.3, r = $, Q = - 3.0 and they are held constant. Comparing the 
Poincark sections to the experiments, plate 1, we see that for all eight values of 8 the 
region which the dye spreads over is completely contained in the chaotic regions of 
the Poincard sections. However, the converse is not true ; the dye does not completely 
cover the chaotic region of the Poincare' section. This is due to the much lower 
number of periods in the experiments (10 or fewer) compared to the Poincard sections 
(1000+ periods). In  theory, if one ran an experiment for as many periods as the 
Poincark section the dye should spread out over the entire chaotic region. In practice 
it is not feasible, or in fact useful, to run an experiment for so many periods. The goal 
is to characterize the mixing ability of a flow. Therefore we are interested in the 
behaviour after just a few periods (order of magnitude 10). The question we must 
answer is 'what can the Poincard section tell us about the short-time behaviour of a 
system?' A Poincare' section does not give precise information about where a 
particular set of initial conditions (such as a drop of dye) will go, but it shows regions 
where initial conditions are forbidden from entering regardless of how many periods 
the experiment is run. If dye is placed in the chaotic region it will not go into any 
regular regions. If dye is placed in a regular region i t  stays within the regular region 
(experience tells us that a blob placed in a regular region stretches very little) and 
never enters the chaotic regions or other regular regions. 

4.2.2. Drawbacks 
Hindered communication. Incorrect analysis can result if the Poincark section data 

are not properly examined. Generally Poincare' sections are shown with trajectories 
of many initial conditions on the same plot. Since the plots are usually done in black 
and white there is no way to differentiate between the trajectories (points) 
corresponding to different initial conditions. Since regular orbits tend to appear as 
closed curves, each initial condition in a regular region will have its own distinct orbit 
and therefore is difficult to misinterpret. However, chaotic orbits show up as a haze 
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(4 (b)  

FIQURE 5. Non-homogeneity in the chaotic region. (a)  and ( b )  show two individual orbits of the 
Poincar6 section shown in figure 4 ( b ) ,  8 = 180". The initial locations of the trajectories are 
indicated by the arrows. The chaotic trajectories in the combined Poincar6 section appear to 
homogeneously cover the chaotic region. However, a close inspection of (a) reveals regions of high 
point concentration, most notably on either side of the inner cylinder. Note that one of these 
regions is where the point was initially placed. In (b )  these regions have no points in them. This is 
evidence of hindered communication between these small chaotic regions and the large chaotic 
region. 

of points scattered over an area. Parts of a chaotic region can have hindered 
communication with other parts of the chaotic region. In  a Poincard section made 
with several different initial conditions on the same plot it is not possible to 
differentiate between chaotic regions where all initial conditions sample the entire 
region in a uniform manner and chaotic regions where initial conditions can get 
trapped in a subregion of the chaotic region for some length of time. The amount of 
time that a trajectory spends in such a subspace determines the extent to which the 
communication is 'hindered '. 

An example is given in figure 5(a,  b)  which shows individual trajectories in the 
chaotic region of figure 4(b),  6' = 180". Careful examination reveals that there are 
regions of high concentration of points on either side of the inner cylinder in figure 
5 (a)  whereas these same regions are devoid of any points in figure 5 ( b ) .  When they 
are combined, as in figure 4 (b ) ,  the chaotic region appears uniformly covered by the 
trajectories. 

For some applications hindered communication between different parts of a 
chaotic region may be unimportant. However, for mixing we are interested in short- 
time behaviour and in this case barriers that only hinder communication on a long 
timescale may keep regions completely separate for the timescale we are interested 
in. Therefore it is imperative that the Poincar6 section data are properly analysed. 
This can be accomplished in one of two ways. The first is to look a t  the Poincare' 
section of each initial condition separately as is done in figure 5.  Any non-uniformity 
in the chaotic regions will become obvious. A better way of doing this is to give each 
initial condition its own colour, if one has the luxury of some sort of colour graphics 
device. Non-uniformities in chaotic regions can be spotted easily in such colour plots. 
(Colour plots are more than just aesthetically pleasing : the information density can 
be many times greater than a black and white plot.) 

Bifurcation in central island. Conversely, not everything that we see in a Poincar6 
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FIGURE 6. The appearance of period-4 orbits in the centre island. For all figures E = 0.3, r = 4, 
8 = -3.0. (a-d) are centred at  the elliptic point of the central island and are magnified by a factor 
of 2.5 (a) 8 = 149.3', (b) 8 = 149.4', ( c )  B = 149.5', (d )  0 = 149.6', (e) 0 = 150.0', (f) shows figure (d )  
at  actual size relative to the cylinders. When 0 = 149.3' the orbits are elliptic in shape. At 8 = 
149.4' the outer orbit develops four dimples, an indication that a bifurcation is about to take place. 
0 = 149.5' shows some rather dramatic effects of this bifurcation. Period-4 islands have appeared 
and grown quite large. At 8 = 149.6' the period-4 islands are still larger in size. They grow and 
move away from the central hyperbolic point very quickly. In fact it is clear that even a change 
of 0.1' (0.07%) can lead to dramatic changes in the Poincar6 section. 

section has a useful meaning in terms of mixing. For example, figure 6 shows the 
bifurcation and appearance of a chain of period-4 islands in the central period-1 
island. The size of the period-4 islands grows very quickly with a very small change 
in 8 (from 149" to 150'). This might lead to the belief that small inaccuracies in our 
control of the experiment can lead to very large changes in the mixing picture. 
However, figure 7 (plate 2) clearly demonstrates that this is not the case. The figure 
shows the evolution of a line consisting of two colours, red and white, placed through 
the centre of the regular region. The colours show the orientation of the line and 
demonstrate that the line rotates with a period of approximately 4 (it would be 
difficult to differentiate between period-2 rotation and period-4 if the line were made 
of just one colour). Further insight can be gained because the tip of the red segment 
was placed in the chaotic region. This provides a dramatic contrast between 
behaviour in the regular and chaotic regions. The portion of the line in the central 



240 P. D .  Swanson and J .  M .  Ottino 

island tends to move as a solid body, stretching very little even after twenty periods. 
The portion of the line in the chaotic region behaves in a substantially different 
manner. It stretches and folds after a few periods, elongating to many times its initial 
length after twenty periods. 

The conclusion is that the period-4 islands which appear in the central island have 
a long timescale associated with them (it can take more than 1000 periods to make 
one rotation about some of the orbits of the period-4 islands) and therefore the 
dramatic changes seen in the Poincard sections will only be seen experimentally a t  
very high periods. Since we are interested in mixing, long-time behaviour is 
unimportant and so this behaviour in the central island is unimportant. Further 
analysis of the regular regions for different parameter conditions support the 
conclusion that regular regions do not mix (i.e. deform blobs of dye). Regular regions 
can be thought of as dead zones where any dye initially placed in them will stretch 
very little if a t  all. 

(Lack of) rate information. If our ultimate goal is to describe mixing in real 
applications, rate information is of prime importance. However, it is not possible to 
determine rates from Poincard sections. This flaw is fundamental to Poincard 
sections and so it is necessary to  develop other methods which can provide this 
information. Another area of interest where Poincark sections provide no information 
is in describing the shape of the striation patterns, e.g. folds, in a chaotic region. A 
first step towards both of these objectives is to locate the most important (low-order) 
periodic points of the flow. 

4.3. Periodic points 
One can think of finding periodic points as a minimization problem. A periodic point 
of a map is a solution to the equation 

wherefn(x) is the nth iteration of the map. The point x is a period-m point if it is a 
solution to (1) for n = m but not a solution for any n < m. This definition suggests 
that a straightforward way to find periodic points is to find stationary points of 
equation (1).  There are numerous methods that will find solutions to such an 
equation. A simple method is to define a function 

which has the properties of being positive definite and having global minima at the 
periodic points. This is a standard idea for locating extrema of a vector field. I n  the 
context of a map d has a simple interpretation, it is the distance between a point and 
its image after n periods. When d is zero the point has been mapped back to itself and 
therefore must be a periodic point. To find the zeros of d one can follow its gradient 
down to a minimum. While this method cannot guarantee that the minima found are 
global minima, the method appears to be quite adequate in this case (every minimum 
we have found has been a periodic point). 

Without any additional information this method leads to a search for periodic 
points in two dimensions. However, the symmetry of the mapping places severe 
restrictions on the locations of periodic points. Period- 1 periodic points must mainly 
fall on the line of symmetry. If a period-1 periodic point was not on the line of 
symmetry there would have to  be a matching period-1 periodic point one the other 
side of the symmetry line and although there is nothing preventing this, it is rarely 
observed in practice. Therefore, we can find most of the period-1 periodic points just 
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by searching the line of symmetry. Thus, we have reduced the two-dimensional 
search to a one-dimensional search. Periodic points of higher period must always 
occur in chains. For example, a period-5 periodic point must occupy four other 
positions before it returns to its initial location. The periodic point can only go to 
these four other positions or uniqueness will be violated. Therefore these four other 
positions are also periodic points of period 5.  Together, this set of periodic points 
forms a 'chain'. We can simplify the search for periodic points of odd period using 
arguments similar to those given for the period-1 case. There is always an unpaired 
point in an odd chain of periodic points and this point will almost certainly fall on 
the line of symmetry. If this point is located we can map it forward enough times to 
locate the rest of the points in the chain. Thus we can reduce the search for odd- 
period periodic points to just a search of the line of symmetry. 

Even-period periodic points present a greater difficulty since it is possible for all 
members of a chain to lie off of the line of symmetry without the existence of a 
mirror-image chain. However, in many cases points of a chain of even period will lie 
on the axis of symmetry (there must be an even number of points on the line of 
symmetry) and in these cases the chain can be found in a manner analogous to the 
odd-period chains. When none of the points lie on the line of symmetry the search 
for chains of even-period periodic points can still be simplified but we must use an 
additional piece of information to do so. Our mapping is derived from a continuous 
flow and therefore when a point is moving it must follow a continuous path. Since 
chains of even-period periodic points lie symmetrically across the line of symmetry 
there must be a path that crosses the line of symmetry at  some intermediate time 
during the period. It turns out that this intermediate time is exactly half-way 
through the period. Therefore, if we search the line of symmetry at  this time we can 
locate those even-period periodic points that never lie on the axis of symmetry after 
whole periods. Again, the search for periodic points is reduced from two dimensions 
to one dimension. This is one of the great benefits of using a mapping that is 
symmetric. 

The character of the periodic point is determined from the eigenvalues of the 
Jacobian evaluated at the point. Since the map is area preserving, the character of 
the periodic point can be determined from the trace of the Jacobian. If the trace is 
greater than two the point is hyperbolic and it will stretch nearby fluid elements. If 
the trace is less than two the point is elliptic and it will tend to rotate nearby fluid 
elements. 

4.3.1. Agreement between periodic points and Poincare' sections (and experiments) 

Figure 8 (plate 3) shows plots of the periodic points superimposed upon the 
associated Poincart5 section. The circles represent elliptic periodic points and the 
crosses hyperbolic periodic points. The agreement between the location of the 
periodic points and the various types of behaviour in the Poincar6 sections is 
remarkable. Every island surrounds an elliptic periodic point of the appropriate 
period. On the other hand, there is very little basis on which to judge the agreement 
between the hyperbolic periodic points and the Poincart5 sections. This is due to an 
inherent flaw of Poincar6 sections: they give no information on structure in the 
chaotic regions (experiments do). However, there are instances where comparisons 
can be made. For the case 0 = 180' there is a chain of period-5 islands with period- 
5 elliptic points in the middle on the outer edge of the chaotic region. In between 
these islands there is a chain of period-5 hyperbolic points. This is precisely the type 
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of behaviour predicted by the PoincarB-Birkhoff theorem (see for example, 
Lichtenberg & Lieberman 1983, p. 169) which describes the way in which rational 
orbits break down into sequences of hyperbolic and elliptic periodic points. 

4.3.2. Agreement between eigendirections of periodic points and striations in 
experiments 

Several things can be learned directly from the periodic points. The largest 
eigenvalue (in absolute value) of a hyperbolic periodic point gives an indication of the 
rate of stretching in the neighbourhood of that point. Indeed, the eigenvalue seems 
to be a reasonable measure of the rate along the entire unstable manifold of the 
hyperbolic periodic point. Since the manifold tends to stretch throughout the entire 
chaotic region the eigenvalue may give a good indication of the mixing rate 
throughout the chaotic region. Also, the eigenvalues of a periodic point vary with 0 
proportionally to the variation of the mixing rate with 8. This can be used to predict 
the difference in mixing rate for two values of 0 based on the difference in the 
eigenvalues of a particular periodic point. 

We can get an idea of the alignment of the striations in the chaotic region by 
plotting the eigendirection associated with the maximum (in absolute value) 
eigenvalue of hyperbolic periodic points. Plots are shown in figure 9. It is clear when 
comparing figure 9 to the experiments shown in figure 3 that the eigendirections do 
give a very good indication of the direction of the striations in the neighbourhood of 
the periodic points. Unfortunately the periodic points are not distributed uniformly 
throughout the chaotic region: some areas have a plethora whereas others are 
completely void. This makes it impossible to speculate on the complete striation 
structure, so some other method must be used to  obtain such a picture. 

4.4. Manifolds 
The manifolds of the periodic points can be of great use in determining the shape of 
the dye striations in the chaotic region. In  order to find the unstable manifold of a 
particular hyperbolic periodic point we can simply surround the point with a circle 
and then ‘turn on’ the flow. The circle will deform but will always surround a 
segment of the unstable and stable manifolds. As the number of periods increases the 
length of the unstable manifold enclosed by the circle increases whereas the length 
of the stable manifold decreases. After a certain number of periods (depending on the 
eigenvalues of the periodic point and the initial radius of the circle surrounding the 
periodic point) the circle will appear as a single curve surrounding part of the 
unstable manifold. Note that manifolds are infinitely long and this method will only 
show a segment of the unstable manifold. 

In  order to make this method computational, the circle surrounding the periodic 
point must be represented as a collection of discrete points. Therefore we do not 
compute the deformation of circle but rather the deformation of a circle of points. 
Figure 10 shows manifolds of the period-1 hyperbolic point corresponding to the 
saddle point of the steady counter-rotating flow. One complication which arises very 
quickly is that the distance between points becomes so large that the resolution in 
our representation of the manifold is not acceptable and we can no longer determine 
where the manifold is. Such a complication is inherent to the method of computation 
because we are interested in stretching the circle to several orders of magnitude 
larger than its initial radius. Obviously this causes the distance between points to 
increase by several orders of magnitude as well. There are a t  least two possible 
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FIGURE 9. The eigendirections for the maximum (in absolute value) eigenvalues of the 
hyperbolic periodic points up t o  period 5. In all cases E = 0.3, r = i, l2 = -3.0. 

methods of dealing with this problem. The first is to make the initial distance 
between points very small. This means that we must use a very large number of 
points in the initial circle. This is not very efficient because the stretching is non- 
uniform and i t  is very difficult to determine a priori how much each pair of points 
will separate. To ensure that no two points spread too far apart we must use an 
excessive number of points. A much better way to deal with the ‘resolute problem ’ 
is to add extra points dynamically, as needed. With this method we save time and 
storage space by avoiding computations with unnecessary points. We have 
implemented this second method in our manifold algorithm. Even using the second 
method the number of points necessary to represent the manifold increases 
geometrically and for the particular examples shown in figure 10 it was excessively 
time consuming to run the algorithm for more than three or four periods depending 
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(g) (4 
FIGURE 10. Unstable manifolds of the perturbed saddle point of the steady flow for various values 
of 8 ranging from 90" to 720". The other parameters are 6 = 0.3, r = +, 52 = -3.0. Initially, for 
(a, b), 8 = 90" and 8 = 180°, the unstable manifold stays very close to the separatrixes of the steady 
state case. When 8 = 270", (c), the manifold begins to wander over a large part of the flow domain; 
it is no longer restricted to  a neighbourhood of the steady-state separatrixes. As 8 is increased 
further the manifolds spread over B larger region of the flow domain. (Compare with the striation 
patterns in plate 1.) 

on the value of 0 and the initial radius of the circle. In any event, displaying a larger 
segment of the manifold than we have shown would tend to obscure rather than 
clarify the results. 

A comparison between figure 3 and figure 10 demonstrates the very good 
agreement between the shape of the striations and the shape of the manifolds. The 
dye has many more folds than the sections of the manifolds shown here but that is 
because the dye is allowed to evolve for many more periods (the experiments not only 
evolve for more periods, 10 compared to 3 or 4, but the initial radius of the drop is 
some orders of magnitude greater than the radius of the initial circle). Pictures 
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of the dye after a short number of periods show patterns that are strikingly similar 
to the manifold plota The ‘shape ’ that the dye will adopt becomes apparent after a 
very few periods ; subsequent periods merely fill in the picture. Undoubtedly if we 
were to plot a very long length of the manifold it would look nearly identical to the 
dye deformation experiments. 

One analytical method that exists for studying manifolds is the Melnikov method. 
The Melnikov method provides a measure of the perpendicular (relative to the 
unperturbed manifold) distance between the stable and unstable manifolds (for 
details of the method see Guckenheimer & Holmes 1983 ; Wiggins 1988). The method 
is valid only for small perturbations and therefore must be used with extreme care 
in the analysis of mixing. If the perpendicular distance between the manifolds 
becomes multivalued the Melnikov method is no longer valid (for example if one of 
the manifolds has a ‘kink’ in it). In fact, there is always some neighbourhood of a 
hyperbolic periodic point within which the Melnikov method can no longer accurately 
approximate its manifolds. However, Rom-Kedar, Leonard & Wiggins (1989) have 
shown that useful information about the mixing can be gained if the Melnikov 
method is valid for as little as one ‘lobe’ (a lobe is the area enclosed by the segments 
of the stable and unstable manifolds between neighbouring zeros of the Melnikov 
function) of the intersection of the stable and unstable manifolds. By viewing plots 
of the unstable and stable manifolds (not shown) we have determined that the 
Melnikov method may be useful (i.e. there is at least one lobe without ‘kinks’ in it) 
for values of 6 up to about 180’. Since the region of most interest (i.e. best mixing) 
occurs well beyond 180’, the Melnikov method is of little use to our mixing studies. 
However, suitable extensions of the method might be developed which could be of 
use in mixing problems. 

4.5. Stretching 
A necessary condition for mixing to occur is that fluid elements must be stretched. 
In  the experiments shown in figure 3 the initial drops have been stretched to a length 
several orders of magnitude greater than their initial radius. A natural question to 
ask in this context is ‘where does most of the stretching occur?’ The results 
presented so far would suggest that the stretching is highly non-uniform throughout 
the flow domain. 

To determine the stretching consider an infinitesimal fluid element (a point in the 
flow domain). The stretching of an infinitesimal vector of arbitrary initial orientation 
located at the element (at this point) can be computed if one knows the deformation 
tensor. The deformed infinitesimal vector at some later time t is given by 

dx( t )  = F(t ) .dX,  

where d X  is the initial vector, dx(t)  is the deformed vector, and F is the deformation 
tensor. To find F we solve the following set of differential equations: 

F =  (Vu)T.F, 1 = 0 ;  

e,, = 1, x,,, = x, 
where x is the location of the fluid element initially located at X ,  u is the velocity, and 
/ is the identity matrix. One detail should be emphasized: the fluid element is 
convected by the flow so the gradient of the velocity field is time dependent. The 
equations of motion for the fluid element must simultaneously be solved to compute 
(Vv)’. The length stretch is defined as the ratio of the magnitudes of dx and d X :  

A = l l ~ ~ l l / l l ~ ~ l l .  



246 P. D. Swanson and J .  M .  Ottino 

Ideally we would like to have a closed-form solution for F,  and hence an expression 
for A, as a function of position and time. In  practice, we are unable to find such a 
solution and so we must compute F numerically. This means that we can only 
determine h at  discrete points in the flow domain. I n  order to determine the 
stretching field we discretize or pixelate the flow and approximate the stretching in 
a pixel as the stretching of a single point within the pixel. Note that this assumes that 
the stretching is relatively homogeneous within a pixel. Such an assumption is 
adequate for the type of results shown here. A value of stretching is arbitrarily 
chosen above which the stretching is considered ‘good’ and any pixel with stretching 
larger than this value is coloured white. This value is called the ‘cutoff value’. Note 
that although our choice is arbitrary, the results are relatively insensitive to it over 
a very large range of values (generally a t  least an order of magnitude). Pixels whose 
values of stretching are less than the cutoff value are coloured black. 

One further detail must be resolved. We must choose whether to plot the 
stretching as a function of initial location or final location, i.e. we can plot how much 
a point initially located in a particular pixel will stretch or how much a point 
currently located in a particular pixel has stretched. The results shown here show the 
stretching as a function of final location ; however, as a consequence of the symmetry 
of the system it can be shown that plots according to initial location and final 
location are symmetric with respect to each other. Note that if we plot the results as 
a function of final position there is no information on the initial position of the points. 
Likewise, a plot of the results as a function of initial position would give no 
information about the final position. 

Figure 11 shows the results of the stretching computations plotted according to 
final position. It is significant that there is no information in the plots indicating 
where the points originated. The plots only show how much each point has stretched 
after some number of periods and then only up to some cutoff value. There may be 
points which stretch several orders of magnitude more than the cutoff value but this 
information is hidden by the plotting method. In  the light of these provisos let us 
compare the stretching results to  the Poinear6 sections. For all cases the white 
regions (where the amount of stretching is large) lie within the chaotic regions as 
marked by the Poincard sections. This is exactly what we expect. 

When the stretching plots are compared with the experiments (figure 3) something 
quite unexpected becomes evident ; the regions of high stretch in the stretching plots 
match, to within their limited resolution, the regions that dye spreads over in the 
experiments. This correlation is remarkable because the stretching computations and 
the experiments show completely different types of results. The experiments show 
the evolution of a continuous set of initial conditions (the initial drop of dye) whereas 
the stretching computations show the degree of stretching in the flow domain but 
contain no information about initial location. Further studies have shown that the 
agreement between experiments and stretching computations is valid even for a very 
short number of periods, two or so, where the dye covers only a small fraction of the 
chaotic region. There must be some underlying reason behind this remarkable match 
of such dissimilar processes. 

A possible explanation for the agreement between the stretching plots and the 
experiments occurs when the stretching plots are compared to the manifold 
portraits (figure 10). The stretching plots seem to have shapes like those of the 
manifolds. However, we have already stated that the highest stretching in the flow 
occurs on these manifolds (the manifolds of period-1 hyperbolic points) so it is not 
surprising that the stretching plots should show maximum stretching near the 
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FIGURE 11. Stretching plots for the discontinuous velocity protocol for values of 8 ranging from 90' 
to 720°, with the other parameters held constant a t  E = 0.3, r = $, SZ = -3.0. To create these plots 
the flow domain is subdivided into squares of side & of the outer cylinder radius. Two initial 
conditions are placed into each box and mapped backward for 10 iterations. At the same time the 
deformation tensor associated with each point is computed. From the deformation tensor it is 
possible to calculate the stretch of an infinitesimal vector associated with the point of any initial 
orientation. In  these computations the stretching from 100 initial orientations are averaged to 
determine an average value of stretching associated with each initial condition. Then the two initial 
conditions of each square are averaged to obtain an average value of stretching for each square. The 
squares are colour-coded according to the amount of stretching they undergo. Any region where the 
stretching is greater than the cutoff value is white while any region where the stretching is less than 
the cutoff value is black. The cutoff value is chosen in an ad hoc manner but the results are 
relatively insensitive to it over a large range of cutoff values (compare with plate 1). 
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manifolds. It was also noted that the shape of the manifolds match the shape of the 
striations in the experiments. So the underlying reason for the agreement between 
the stretching plots and the experiments may be a result of the manifold structure. 

5. Conclusions 
The overall goal of this research is to find computational methods to predict what 

sort of mixing, as shown by dye experiments, a given flow will exhibit. It is clear that 
no one particular computational method can provide a complete prediction. If we 
just want to get a gross picture of the spreading of the dye, then the Poincare' section 
is adequate. The chaotic regions of the Poincar6 sections match the regions that the 
dye spreads over in experiments. However) the match is not perfect and there is no 
information about the rate of mixing in a Poincar6 section. Further, some phenomena 
which look quite spectacular in the Poincare' sections do not show up in any 
significant way in the experiments (i.e. the Poincare' sections can be misleading if 
viewed on their own). The plot of the eigendirections associated with the hyperbolic 
periodic points shows a strong correlation with the alignment of the striations in the 
mixing experiments. However, since the periodic points are not distributed uniformly 
throughout the flow, they cannot form a complete picture of the striations. A more 
complete picture is given by the unstable manifolds of the hyperbolic periodic points ; 
the manifolds of period-1 manifolds give a template for the folding of the dye 
throughout the chaotic region but the method can only give a template, not the full 
striation pattern. 

The best indicator of dye spreading is given by stretching plots. However, since we 
do not have an adequate explanation for the correlation between the stretching plots 
and the experiments, stretching plots should be used with caution. Also one should 
keep in mind that the appearance of the stretching plots depends, to a small degree, 
on the specific cutoff value used (a good rule of thumb is to make the cutoff value 
equal to the sum of the total displacements of the cylinders for the experiment). In  
spite of these imperfections the stretching plots seem to match the experiments 
extraordinary well. I n  fact, if we increase the resolution of the stretching plots the 
match with the experiments is even better. This match does not come without a cost 
however; the computational time for these stretching plots is a t  least an order of 
magnitude greater than any other method and becomes even greater if more 
resolution is desired. 

Note that all of these methods deal with the chaotic region. From the viewpoint 
of mixing it is a reasonable approximation to  consider fluid elements in the regular 
regions to not stretch or mix at all ; the regular regions are best thought of as 'dead ) 
zones. Note also that the results presented here were produced using a discontinuous 
velocity protocol. We chose this protocol because i t  was very simple to produce both 
experimentally and computationally. However, we have done computations based 
on several other similar velocity protocols (similar in the sense that they create a 
symmetric mapping) and have found the results to be remarkably similar to the 
discontinuous velocity protocol. In  fact, for many sets of parameter values i t  requires 
very close inspection to differentiate between results from different velocity 
protocols. 

Finally, the time it takes to run a particular numerical experiment may be a very 
important factor when attempting to decide which of the methods to use. The 
Poincare' sections shown here took from 5 to 50 min to complete on our Sun 3-160 
(with a floating point accelerator). It took approximately the same time to find the 
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periodic points up to period 5. The time to find periodic points of a given period goes 
up exponentially with the period. It took from 20 to 50min to  find a length of 
manifold approximately 80 times the radius of the outer cylinder. The stretching 
plots took far longer to compute, ranging in time from seven hours to two days. Note 
that our Sun microcomputer works at  about half the speed of a VAX 8600 on this 
particular problem. 
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